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Abstract 
 

In this paper we have investigated through the numerical solution of the basic equation 
as well as through the dynamic model, the influence of higher order correction terms to the 
nonlinear amplification/absorption and to the nonlinear refractive index on the self-frequency 
shift of Raman dissipative solitons. We have found a nonlinear dependence of the self - 
frequency shift of Raman dissipative solitons on the parameter describing intrapulse Raman 
scattering in the presence of the saturation of the nonlinear gain. With the increase of the 
absolute value of the saturation of the nonlinear gain, the maximum absolute value of the 
frequency shift decreases and its position moves to larger values of the parameter describing 
intrapulse Raman scattering. The increase in the value of the nonlinear gain leads to an increase 
in the maximum absolute value of the frequency shift, without changing its position. We have 
also observed the nonlinear dependence of the absolute value of the frequency shift on the 
parameter describing intrapulse Raman scattering in the presence of higher order correction 
term to the nonlinear refractive index. The discovered nonlinear dependence of the self-
frequency shift on the value of the saturation of the nonlinear gain as well as on the higher order 
correction term to the nonlinear refractive index can be used for the better understanding and 
control of the spectral characteristics of Raman dissipative solitons. The dynamic model 
correctly describes all the features of the observed phenomena. 
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1. INTRODUCTION 

In optics the complex cubic-quintic Ginzburg - Landau equation (CCQGLE) and the 
complex cubic Ginzburg-Landau equation (CCGLE) have been used to describe a passive 
mode-locked solid state and fiber lasers [1-3] as well as wave propagation in nonlinear optical 
fibers with gain and spectral filtering [4-6]. The known exact solutions as well as the numerical 
solutions of the CCQGLE have been reviewed in [7-8]. Some example solutions in the negative 
dispersion region worth mentioning are: localized stationary solutions as well as pulsating 
solutions: plain pulsating, creeping, and erupting (exploding) solutions [9-10].  



2 

 

Finite-dimensional dynamic models have been used for determining the exact solutions of 
the CCQGLE [11-15] and their stability [16-17] as well as for the dynamic analysis of the 
solutions of the CCQGLE. In the last case finite-dimensional dynamic models have been derived 
through the soliton perturbation theory [5], the method of moments [18-21] and the variation 
method in [22].  

For the study of ultra-short optical pulses, it is necessary to include higher-order effects: 
third-order of dispersion (TOD), self-steepening (SS) and intrapulse Raman scattering (IRS) 
[23,24,25,5,6]. The stimulated Raman self-scattering of femtosecond optical solitons, has been 
experimentally discovered in [26, 27]. This effect is also called intrapulse stimulated Raman 
scattering, or often intrapulse Raman scattering [28,5,6]. In this regime of stimulated Raman 
scattering, the spectrum of a high-power short laser pulse proves to be so broad that it covers 
the band of Raman resonances of the medium. In this case, the Stokes spectral component of 
the field shifted by the frequency of molecular vibrations is contained within the pump pulse 
itself. The amplification of low-frequency Stokes components in the field of high-frequency anti-
Stokes spectral components of the same soliton pulse, results in a continuous shift of its 
spectrum known as soliton Raman self-frequency shift [6]. This effect plays an important role in 
studies of a supercontinuum generation [29,30]. 

Attention has been paid to the investigation of the influence of HOE on the exploding 
solutions numerically [31,32] and analytically [33]. The transition of erupting solutions under the 
influence of SS to fixed-shape solutions has been studied in [34]. The appearance of a periodic 
erupting solution has been observed under the influence of IRS and has been related to the 
sequence of period-halving and period-doubling bifurcations controlled by the IRS parameter 
[35]. The influence of noise (additive and multiplicative), and HOE on exploding solutions has 
been studied [36]. 

The influence of HOE on the localized stationary solutions (dissipative solitons) as well as on 
the plain pulsating solutions is of great theoretical and practical importance. An exact solution of 
the CCQGLE perturbed with HOE has been identified which requires a specific relation between 
the physical parameters and the parameters of the solution [23]. A finite dimensional dynamic 
system for the amplitude and frequency of the soliton solution has been derived [37, 38]. The 
analysis of its stationary solutions as well as their stability has shown that narrowband filtering 
and nonlinear gain can control the self-frequency shift due to the IRS of ultra-short optical 
solitons [37,38]. Thanks to the further analysis of the dynamic system of [37,38] we have found 
the Poincare–Andronov-Hopf bifurcation with respect to the parameter describing IRS [39]. In 
order to describe the influence of the saturation of the nonlinear gain as well as the influence of 
TOD and SS on this bifurcation, a dynamic system describing the spatial evolution of all soliton 
parameters (amplitude, frequency, time position and phase) has been derived and shortly 
presented in [40,41,42]. It has been shown that TOD and SS can lead to a reduction in the time 
shift of the pulse [40,42]. The existence of short high-amplitude dissipative solitons in the 
presence of IRS has been found [42] using the dynamic system of [40,41,42]. It has also been 
shown that the singularity in the solution of the CCQGLE when the saturation of the nonlinear 
gain tends to zero [13] (see parameter μ when it is negative below), no more exists in the 
presence of IRS [42]. The perturbation approach using as initial ansatz the form closer to the 
exact solution of the CCGLE for the analysis of perturbed with HOE CCGLE has been presented 
in [43]. Using the method of momentum [18] we have developed the finite degree of a freedom 
model which takes into account the independent evolution of the width and chirp of the pulse for 
the analysis of the influence of HOE on the solutions of the CCQGLE in the anomalous 
dispersion regime [44,41] (see also [45]). The transformation of the single spike dissipative 
solitons with extreme spikes of CCQGLE into dissipative solitons have been found in [46]. There 
it was found numerically as well as by the model [44] that the amplitude of the Raman dissipative 
solitons decreases, while the absolute value of the self-frequency shift decreases with the 
increase of the value of the IRS. In a recent study the role of IRS as a feedback mechanism for 
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the existence of stable propagating dissipative solitons with uniquely determined velocity in 
CCGLE has been studied through a semi-analytical approach [47]. It has been shown that the 
limit of the vanishing magnitude of the IRS coefficient is singular. In [48] the influence of IRS, SS 
and TOD on the solutions of the CCQGLE has been studied by means of bifurcation analysis of 
the dynamical model (DM) proposed in [44]. The following types of transformations have been 
identified: a) from chaotic into two-periodic solution; b) from two-periodic into a limit cycle; and c) 
from a limit cycle into a stationary solution under the influence of IRS. Interaction between all 
higher-order effects has been studied [48]. Following the idea of [48] in [49] we have studied 
numerically the influence of IRS and self-steepening on the period-2 pulsating solution of the 
CCQGLE. A cascade of transformations of the numeric solutions under the influence of SS has 
been reported, which includes the existence of: period-1 solutions, chaotic solutions, period–
doubling transformations and others. It has been shown that by increasing the IRS parameter, 
the period-4 pulsating solution related to the SS can be successfully transformed into a period-2, 
period-1 pulsating solutions and, finally, into a stationary solution [49]. It has been mentioned 
[48] and reported in [50] that the obtained numerical results of [47] can be described very well by 
the dynamic model of [44].  

We present here a study of the localized stationary soliton-like solutions of the perturbed 
CCGLE and CCQGLE with the terms responsible for the IRS. As the soliton-like solutions of 
CCGLE and CCQGLE are usually called dissipative solitons, we may formulate our aim as the 
study of the self-frequency shift of the Raman dissipative solitons (RDS). Our aim is to study the 
influence of the nonlinear gain, higher order correction terms to the nonlinear 
amplification/absorption and to the nonlinear refractive index on the self-frequency shift of RDS. 
In order to accomplish this, we have solved numerically the basic equation with the Agrawal’s 
split-step Fourier method with two iterations and applied the dynamic model with finite degrees 
of freedom obtained with the method of moments [44]. A detailed comparison of the results 
obtained by these two methods has been presented and analyzed.  

The paper is organized as follows: First, the physical meaning and application of the 
CCQGLE perturbed with higher-order effects are presented in Sec.2. In Sec. 3 we introduce the 
finite dimensional dynamic model derived in [44] as well as the approximate fixed points of the 
model. In Sec. 4 we study the IRS in the presence of nonlinear gain. We fix the value of the 
parameter describing IRS and change the parameter describing the nonlinear gain. The 
presented results show that the self-frequency shift of the RDS increase with the increase of the 
value of the nonlinear gain. In Sec. 5 we present our results concerning the influence of higher 
order correction term to the nonlinear amplification/absorption on the self-frequency shift of the 
RDS. We have found a nonlinear dependence of the absolute value of the self - frequency shift 
of RDS on the parameter describing IRS in the presence of the saturation of the nonlinear gain. 
With the increase of the absolute value of the saturation of the nonlinear gain the maximum of 
the absolute value of the frequency shift decreases and its position moves to larger values of the 
parameter describing IRS. In Sec. 6 we present our results concerning the influence of higher 
order correction terms to the nonlinear refractive index on the self-frequency shift of the RDS. 
Here we present our findings for the nonlinear dependence of the absolute value of the 
frequency shift on the   in the presence of the higher order correction term to the nonlinear 

refractive index. Our discussion of the applicability of the dynamic model [44] is presented in 
Sec.7. Finally, we make our conclusions in Sec. 8.  

2. NUMERICAL CALCULATION OF THE BASIC EQUATION 

The dynamic behavior is described by the following complex cubic-quintic Ginzburg-
Landau equation (CCQGLE) perturbed by IRS [1-6]: 
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where U  is the normalized envelope of the electric field, t  and x  are the retarded time and the 

normalized propagation distance,   is the linear loss-gain coefficient,   describes the spectral 

filtering (gain dispersion),   is the nonlinear gain or absorption coefficient [14-16] (the nonlinear 

gain arises from the saturable absorption),  , is the higher order correction term to the 

nonlinear amplification/absorption [14-16] (if negative, it accounts for the saturation of the 
nonlinear gain [10,19]),   is the higher order correction term to the nonlinear refractive index 

[14-16] (if negative, it corresponds to the saturation of the nonlinear refraction index [10]). In this 
equation we have implied that the group-velocity dispersion is anomalous. Parameter   takes 

into account the effect of the IRS in the simplest quasi – instantaneous description. In this case 
there has been applied a linear approximation to the frequency – domain Raman response 
function [51-54]. Such a description of the IRS is valid for pulses shorter than 1 ps but wide 

enough to contain many optical cycles (pulse width 100 fs  ) [6]. Eq. (1) considers a frame of 

reference moving with the pulse. Eq. (1) is basically phenomenological model, but it has proved 
to be a good qualitative model for the real mode-locked lasers. It has been proposed as a 
master equation for solid-state lasers with fast saturable absorber [1-3] as well as for the mode-
locked fiber lasers [55,56]. The relations between the physical parameters describing a ring fiber 
laser mode locking through nonlinear polarization rotation and the coefficients of CCQGLE have 
been derived in [57].  

For the numerical solution of Eq. (1), we have used the Agrawal’s split-step Fourier method 
with two iterations [58,59]. The numerical parameters for this calculation are as follows: time 
resolution: 0.0002-0.00244, number of samples: 215-217, a constant propagation step (but case 
dependent) - with size between 10-3 and 10-5 or adaptive step-size. The following numerical 
quantities have been calculated numerically solving Eq. (1): mean frequency: 
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   and identical to the model (3) time width: 

( ) ( ) ( )( ) ( )0 / 0x x   =  where  ( ) ( ) ( )
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, nx U x t x dt 
+

−

=  . We also use the quantity full-width half- 

maximum: ( )2.6339FWHM x= . Because of the internal properties of the fast-Fourier 

transformation, the initial condition used for the direct calculation of (1) contrary to (2) has a 

negative phase sign: ( )    0, sec expU t h t i t  = − . That is why, in the results, the sign of the 

frequency obtained by (3) is the same as the frequency sign obtained by Eq. (1) which 
corresponds to the physical reality.  

3. DYNAMIC MODEL AND APPROXIMATED FIXED POINTS 

To derive the dynamic system, we use the trial function in the following form [18,19,20,44]: 
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where ( )x , ( )x , and ( )xk  are respectively the amplitude, width, and position of the pulse 

maximum, ( )x  is the frequency, and ( )xc  is the chirp parameter. Applying the method of 

moments of [18] we obtain the following set of ordinary differential equations for the parameters 

( )x , ( )x , ( )xk , ( )x ,and ( )xc [44]: 
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Dynamic system (3) allows the study of the influence of the IRS on the localized solutions 

of the CCQGLE. We also use the quantity full width half maximum: ( )2.6339FWHM x= . System 

(3) for the cases of 0  , 0s  , 0  , 3 0  has been first derived and studied in [18]. The 

essential point in the derivation of this equation is the relation between the width and chirp of the 

pulse [18]. A simpler form of Eq. (3) has been studied where 0  , 0  , 0  , 0  , 0   

with 0 =  [19,20]. The position ( )xk  is not involved in the first, second, fourth and fifth 

equations, so it will not be involved in the search for the fixed points of DM (3). It has been 

shown that at 0   and for x−  , the frequency   tends to zero and the pulse position k  
tends to a constant value which has allowed the authors to obtain a three–dimensional system of 

ODE for the amplitude ( )x , width ( )x  and chirp of the pulse ( )c x . The velocity v corresponds 

to  while the FWHM corresponds to ( ) ( )max2ln 2 3 x+ . It has been found that 

there exists a correspondence between the attractors of the model and the localized solutions of 
the CCGLE, namely, that the stationary solutions of the CCGLE correspond to fixed points, while 
the pulsating solutions are related to stable limit cycles [19,20]. However, it is well known that 
the IRS leads to changes in the pulse frequency, pulse shape and pulse spectrum. So, the 

frequency ( )x  becomes a function of the distance of propagation and should not be neglected.  

 In the case of the CCGLE perturbed with IRS, we have found approximated fixed points 
for three of the parameters in dynamic model (3): amplitude, frequency and width. To get these 
fixed points we have assumed that the chirp is zero and have neglected the fifth equation for the 
chirp. It has turned out that this assumption is not an obstacle for obtaining useful results. We 

have introduced the pulse energy as
2Q  = . Solving the reduced system of three equations for 

identifying the stationary solutions ( ), ,   , we have found 4 different fixed points of which only 

one has a physical meaning:  

( )max max/k x x
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 ,         where 

( ) ( )2 2 2 2 264 25 ; 5p q p     = + = − + .       (4) 

It turned out that this fixed point correctly describes our numerical observations in the case of the 
CCGLE perturbed with IRS.  

The principal question for the applicability of dynamic model (3) is whether during its 
propagation the numerical localized solutions are close to the sech-like form of Eq. 2. In this 
work we focus our attention on soliton-like numerical solutions, so we have chosen a set of 
values for the physical parameters used in the solving of Eq. 1 which will satisfy the 
requirements for achieving those solutions. In the process of our study this question of the 
preservation of the time shape of numerical solutions will be analyzed. The numerical solution of 
DM (3) presented here has been obtained by means of Wolfram Mathematica [60] and Matlab. 

4. CCGLE: THE INFLUENCE OF THE NONLINEAR GAIN ON THE SELF-
FREQUENCY SHIFT 

In nonlinear optics the influence of bandwidth limited amplification characterized by ,   

on the IRS characterized by   has been in the focus of some earlier studies [61-65]. It has been 

shown that in the presence of bandwidth limited amplification, the soliton self-frequency shift due 
to the IRS decreases. It is well known that the parameter   which describes the nonlinear gain 

of absorption plays a key role in the analysis of the properties of the solutions of CCGLE [14-16]. 
It has been shown that using narrowband filtering and nonlinear gain, there can be achieved 
stable soliton propagation over long distances in the presence of IRS [38]. In order to describe 
the properties of the self-frequency shift of RDS in the perturbed with IRS CCGLE, we need two 
dependencies. The first one is the dependence of the parameters describing the RDS on   for 

fixed   and the second one, the dependence of the parameters describing the RDS on   for 

fixed  . We study here the first one, namely the influence of   on all the parameters describing 

the RDS for fixed ,   and  . The following values of the physical parameters have been used:

, 0, 0 = = . The important question is how to choose the values of 

the physical parameters. It is well known from the soliton perturbation theory that the soliton is 

stable provided that 0  and 2   [13,14]. The relation between   and   (“curve S”) 

namely: 

2

2

3 1 4 1

4 18
S


 



+ −
=

+
 on the plane ( ),   divide it in such a way that in order to get 

“solutions with fixed amplitudes” we should have values of 0  below “curve S” and 0   

above it [12,14]. On this line the “solution with fixed amplitude” becomes singular (its amplitude 

tends to infinity, while the width vanishes). In the case of 1  the 2   [12,14]. In the case 

of 0 =  the solutions on the curve S are “solutions with arbitrary amplitude” [12, 14]. In our case 

0.6 =  so 0.21S = , and as 0.3 S =   and 0.012 = −  is small and 0.4d− =  what we get is 

slightly above the “curve S” so we could expect a “solution with fixed amplitude”, which, 
however, is close to the “curve S”, or to the “solutions with arbitrary amplitudes” [12,14].  

Applying our dynamical model (3) we have established that for fixed values of ,   and 

parameter   which characterizes IRS, by increasing the value of the nonlinear gain  ,  the 

values of the amplitude and frequency of the stationary pulses also increase, so the self-
frequency shift of the RDS is increased. These model predictions are verified in Fig. 1 below 

0.012; 0.6; 0.3  = − = =
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where the results from the numerical solution of the basic Eq. 1 are compared with the results of 
our model given in Eq. 3.          

    
 

a)                  b) 
FIGURE 1. Results obtained by direct numerical solution of (1) (solid circles) and the numerical solution of 
DM (3) (empty circles) for a) the peak amplitude (solid lines) and FWHM (dash lines), b) mean frequency 

(solid lines) and velocity (dash lines) as functions of  0.22;0.32   at parameters 

0.012; 0.6; 0.05;  = − = = ( ) ( ) ( )0 10; 0 1/ 0 ;  = = ( ) ( )0 0; 0 0c = = . The propagation 

distance is max 200x = . 

 

The numerical region for the change of the parameters describing the nonlinear gain 

[0.22,0.32]   is chosen in the following way. After the numerical calculation of Eq. 1 we have 

found that for values of 0.22  , the numerical solutions are unstable ones: the amplitudes 

decrease and finally disappear. Next, for values of 0.32  , we have not obtained a stationary 

solution. For the calculation of the cases of 0.31,0.32 =  a step size of order 
510−
has been 

used.  Fig. 1 shows two ways of calculation: a) direct numerical solution of Eq. (1); and b) 
numerical solution by means of the dynamic model (3).  As can be seen in Fig. 1, if we increase 
the value of the nonlinear gain  , the values of the amplitude (Fig. 1a) and frequency (Fig. 1b) 

of the RDS also increase. Moreover, the pulse width decreases (Fig. 1a) while the velocity of the 
solutions (Fig. 1b) increases (Fig. 2a). From these results we can draw the conclusion that the 
self-frequency shift of the RDS increases with the increase of the value of the nonlinear gain  . 

The pulse amplitude increases and its width decreases, i.e. solutions compress. Fig. 1 
represents the dynamic model (3) and correctly describes all the observed dependencies. 

The second dependence of the parameters’ describing the RDS on   for fixed   has 

been studied earlier [38,47]. It has been emphasized that the existence of a stable RDS in 
CCGLE is possible due to the IRS [38]. In a recent study the role of IRS for the existence of 
stable propagating dissipative solitons in the CCGLE has been studied and it has been shown 
that the limit of the vanishing magnitude of the IRS coefficient is singular [47].  

5. CCQGLE: THE INFLUENCE OF THE HIGHER ORDER CORRECTION TERM TO 
THE NONLINEAR AMPLIFICATION ON THE SELF-FREQUENCY SHIFT 

 It is well-known that the introduction of the saturation of the nonlinear gain 0   in 

CCGLE leads to the restriction of the increase of the amplitudes of solutions due to the nonlinear 
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gain [7]. As a result of intensive numerical investigation of CCQGLE, some areas in the space of 

the physical parameters ,  ,  ,   have been established, in which there have been found 

stable localized solutions of the CCQGLE [7]. It is shown that if 0  , 0  , 0  and 0   the 

background instability is avoided [7,20]. In order to describe the properties of the self-frequency 
shift of RDS in the CCQGLE perturbed with IRS, we need two dependencies. The first one is the 
dependence of magnitudes describing the RDS on   for fixed values of ,   and the second 

one - the dependence of magnitudes describing the RDS on   for fixed values of ,  . Recently, 

the first dependence comparing two values of 0   has been studied by dynamical model [37-

39] and it has been shown that the increase in the absolute value of the saturation of the 
nonlinear gain   leads to the reduction of the amplitude of the high-amplitude RDS [42].  

Our first aim in this Section is to analyze the dependence of the parameter describing the 

RDS on   for fixed values of ,   for a region of values of  0.1;0  − , which allows us to 

discuss the properties of stationary solutions with arbitrary amplitudes. Next, we fix the value of 
the nonlinear gain   and the value of the saturation of the nonlinear gain   and change the 

value of parameter   which describes the IRS. Finally, we study the properties of the RDS in the 

case of 0   fixing the values of the nonlinear gain   and the saturation of the nonlinear gain 

  and changing the value of .  

 First, we fix the value of the nonlinear gain   and change the value of the saturation of 

the nonlinear gain  in the presence of fixed IRS for 0.01 = . A detailed comparison between 

the predictions of dynamic model (3) and the results obtained from the numerical simulation of 
Eq. 1 is presented in the next Fig. 2.  

   
                                   а)      b) 

FIGURE 2. Results obtained by direct numerical solution of (1) (solid circles) and the numerical 
solution of DM (3) (empty circles) for: a) the peak amplitude (solid lines) and FWHM (dash lines); b) the 

mean frequency (solid lines) and velocity (dash lines) as functions of  0.1;0  −  (the ordinates are 

logarithmic) at parameters 0.012; 0.6; 0.3;  = − = = 0.01 = . The initial condition is 

( ) ( ) ( )0 1; 0 1/ 0 ;  = = ( ) ( )0 0; 0 0c = = .  

 
All the obtained dependencies of the magnitudes of the RDS on the value of the 

nonlinear gain , presented in Fig. 2 have a monotonic character. The results presented in Fig. 

2a clearly show that by reducing the absolute value of the saturation of the nonlinear gain , the 

amplitude of the RDS increases as should be expected from the existing singularity of solutions 
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of CCQGLE for 0− →  [13,14]. As has been mentioned, the singularity in respect to the 

coefficient describing the saturation of the nonlinear gain 0− →  [13,14] no longer exists in the 

presence of IRS [42]. It is clearly seen from the Fig. 2a that for 0 =  the peak amplitude is 

approximately 45.2. With the increase of the absolute value of the saturation of the nonlinear 
gain , the amplitude of the dissipative solution greatly decreases (till approximately 1 for

0.062 = − ), the time width increases (Fig. 2a), and the mean frequency steadily decreases 

(Fig. 2b). The velocity also decreases (Fig.2b). Comparing Fig. 2a with Fig.1a however, we can 
see that just contrary to the case of the nonlinear gain   when the absolute value of its 

saturation increases, the amplitude of the RDS decreases and the frequency also decreases. In 
other words, the saturation of the nonlinear gain acts against the self-frequency shift caused by 
the nonlinear gain. As can be seen from Fig. 2a, b the predictions of dynamic model (3) for all 
the parameters of the RDS are in a very good agreement with the corresponding results from the 
numerical solution of Eq. 1. 

Now, we fix the value of the nonlinear gain 0.3 =  and the value of the saturation of the 

nonlinear gain
41 10 −= −   and change the value of parameter   in the range  0;0.07  . 

  
a)                                                                           b) 

   
   c)        d)  

 
FIGURE 3. Results obtained by the direct numerical solution of (1) (solid circles, triangles, squares) 

and the numerical solution of DM (3) (empty circles, triangles, squares) for: a) the peak amplitude (solid 
lines) and FWHM (dash lines); b) the mean frequency (solid lines) and velocity (dash lines) as functions of 
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[0;0.07]   at parameters 0.3 = 0.0001 = − ; c) the mean frequency: 0.001 = −  (solid lines) and 

0.0001 = −  (dash lines) as functions of [0;0.1]   at parameters 0.3 =  and d) the mean 

frequencies: 0.27 =  (triangles) and 0.3 =  (squares) and 0.33 =  (circles) as functions of   at 

parameters 0.0001 = − . In all cases 0.012; 0.6 = − =  and ( ) ( )0 0; 0 0c = =  

 
 As can be seen from Fig. 3a the dependencies of the amplitude and FWHM on   with 

the increase the value of the   have a monotonic character: the amplitude decreases, while the 

pulse width increases. Due to the presence of 
41 10 −= −  , the maximum value of the 

amplitude decreases. In Fig. 3b we can observe, however, a different type of behavior of the 
frequency shift and the velocity of RDS as a function of . In fact, the frequency shift has a very 

well expressed minimum (or a maximum of the absolute value of the frequency shift), while the 
velocity has a well expressed maximum in the region of  . The minimum of the frequency shift 

and the maximum of the velocity are for the same value of ~ 0.015 . In other words, with the 

increase the value of  , the absolute value of the frequency at first increases till approximately

~ 0.015  and then the absolute value of the frequency steadily decreases. So, it turns out that 

we have obtained a nonlinear dependence of the absolute value of the frequency shift on   in 

the presence of saturation of the nonlinear gain (
41 10 −= −  ). Obviously, the behavior of the 

self-frequency shift and that of velocity are related.  
In Fig. 3c we show how the observed nonlinear dependence of the absolute value of the 

frequency shift on   depends on the value of the saturation of the nonlinear gain . As can be 

seen from Fig. 3c with the increase of the absolute value of the saturation of the nonlinear gain 

up to 0.001 = , the maximum absolute value of the frequency shift reduces to 1.5   and its 

position moves to the larger values of 0.05  . If we further increase the absolute value of the 

saturation of the nonlinear gain up to 0.01 = , the maximum of the absolute value of the 

frequency shift reduces to 0.5   and its position moves to the larger values of 0.15  . In 

Fig. 3d we show how the observed nonlinear dependence of the absolute value of the frequency 
shift on   depends on the value of the nonlinear gain . As can be seen from Fig. 3d, with the 

increase of the value of the nonlinear gain  , the maximum absolute value of the frequency shift 

increases up to 6.5   . However, the position of its maximum does not change. For the cases 

studied in Fig. 3c and Fig. 3d we have observed numerically and by the dynamic model (3) the 
expected reduction of the amplitude of the solution with the increase of the value of  . We have 

also found that, as could be expected from Fig. 1, with the increase of the value of the nonlinear 
gain   the amplitudes at small   increase. The tendency for the decrease of the amplitude with 

the increase the value of   remains unchanged. (In order to maintain conciseness, these results 

are not presented here.)  In all the examined cases, the dynamic model (3) qualitatively well 
describes our numerical findings. 

Although the negative sign of 0   has a meaning of the saturation of the nonlinear 

gain, there have also been studied cases of 0   [14,16]. Here we have also studied the 

properties of the self-frequency shift of the RDS for positive values of . Fig. 4 shows the 

evolution with   of the parameters of RDS for fixed values of the nonlinear gain 0.3 =  and of 

the saturation of the nonlinear gain
63 10 −= +   .  
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a)                  b) 

FIGURE 4. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical 
solution of DM (3) (empty circles) for: a) the peak amplitude (solid lines) and FWHM (dash lines), b) the 

mean frequency (solid lines) and velocity (dash lines) as functions of [0.0055;0.07]   at parameters 

0.012; 0.6; 0.3;  = − = =
63 10 −= +  .  

 

With the increase of the value of  , the stationary peak amplitude decreases (Fig.4a), 

FWHM increases (Fig. 4a), the velocity decreases (Fig. 4b), and the absolute value of the 
frequency also decreases (Fig. 4b). The dependences of all the parameters describing the RDS 
as a function on   have a monotonic character. The results obtained by DM (3) are fully 

consistent with those obtained by Eq. (1). The results, presented in Fig. 4b, for the 
dependencies of the frequency and velocity on the value of   are very different from those 

shown in Fig. 3b. The maximum absolute value of the frequency shift for small   also increases.  

We can summarize the obtained results in this Section in the following way. We have 
observed numerically a nonlinear dependence of the self - frequency shift of RDS on the 
parameter   describing IRS in the presence of the saturation of the nonlinear gain (Fig.3a, b). 

With the increase of the value of the saturation of the nonlinear gain, the maximum absolute 
value of the frequency shift decreases and its position moves to the larger values of parameter  

describing IRS (Fig. 3c). The increase in the value of the nonlinear gain leads to an increase in 
the value of the maximum absolute value of the frequency shift, without changing its position 
(Fig. 3d). For positive values of , all the parameters characterizing the dissipative solutions 

tend to change in a very similar way to those of the CCGLE perturbed with IRS. All the obtained 
numerical results are very well described by dynamic model (3). 

6. CCQGLE: THE INFLUENCE OF THE HIGHER ORDER CORRECTION TERM TO 
THE NONLINEAR REFRACTIVE INDEX ON THE SELF-FREQUENCY SHIFT 

In this Section we will study the influence of the higher order correction term to the 
nonlinear refractive index [14-16]   on the self-frequency shift of RDS for a fixed value of the 

nonlinear gain. It has already been mentioned that higher order correction terms to the nonlinear 

refractive index [14-16]   when negative ( 0  ) correspond to the saturation of the nonlinear 

refraction index [10].  
Our first aim in this Section, is to analyze the dependence of the magnitudes describing 

the RDS on   for fixed values of ,   for a region of values of
53 10 ;0.4 −  −   , which allows 
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us to discuss the properties of stationary solutions with arbitrary amplitudes. Second, we will fix 
the value of the nonlinear gain   and the value of the saturation of the nonlinear refractive index 

0   and change the value of parameter   which describes IRS. Finally, we will study the 

properties of the RDS in the case of 0   fixing the values of the nonlinear gain   and the 

saturation of the nonlinear refractive index 0   and changing the value of .  

First, we fix the value of nonlinear gain   and change the value of the saturation of the 

nonlinear refractive index   in the presence of fixed IRS for 0.01 = . A detailed comparison 

between the predictions of dynamic model (3) and the results obtained from the numerical 
simulation of Eq. 1 is presented in Fig. 5 below.  

    
a)          b) 

 
FIGURE 5. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical 

solution of DM (3) (empty circles) for: a) the peak amplitude (solid lines) and FWHM (dash lines); b) the 

mean frequency (solid lines) and velocity (dash lines) as functions of 
53 10 ;0.4 −  −    at parameters 

0.012; 0.6; 0.3;  = − = = 0.01 = .  

 

In the presented region of  
53 10 ;0.4 −  −    we have found stationary solutions. All 

dependencies of RDS on the value of  , presented in Fig. 5, have a monotonic character. The 

obtained results show that by increasing the value of the positive  , the amplitude of the RDS 

decreases (Fig.5a), while the FWHM increases (Fig.5a). The frequency shift and velocity greatly 
decrease (Fig.5b). Comparing Fig. 5a with Fig.1a, however, we can see that just opposite to the 
case of the nonlinear gain   when the absolute value of the higher order correction terms to the 

nonlinear refractive index increases, the amplitude of the dissipative solution decreases and the 
frequency also decreases. In other words, the higher order correction terms to the nonlinear 
refractive index act against the self-frequency shift caused by the nonlinear gain. Both numerical 
simulations of Eq. 1 and dynamic model (3) reveal the existence of high-amplitude solutions (see 
Fig.5a) for very small values of  . Fig.5 also presents the results obtained for negative values of 

  (internal figures). In particular, the parameters of RDS have been calculated for three values 

of 
5( 1, 2, 3) 10 −= − − −  .   
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a)            b) 

 
FIGURE 6. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical 

solution of DM (3) (empty circles) for: a) the peak amplitude (solid lines) and FWHM (dash lines); b) the 

mean frequency (solid lines) and velocity (dash lines) as functions of [0.00875;0.07]   at parameters 

0.012; 0.6; 0.3;  = − = = 53 10 −= −  .  

 
The presented results clearly show that by increasing the value of  , the amplitude of 

the RDS decreases (Fig.6a), while the FWHM increases (Fig.6a). The frequency shift and the 
velocity greatly decrease (Fig. 6b) and the velocity decreases. We can observe a good 
correlation between the results from the numerical simulations of Eq. 1 and dynamic model (3).  

It has also been mentioned that we will consider the case of 0   studied in [14,16]. We 

present here our results from the study of the properties of the self-frequency shift of the RDS for 
positive values of  . Fig. 7 shows the evolution with   of the parameters of RDS for a fixed 

value of the nonlinear gain 0.3 =  and the following fixed values of the saturation of the 

nonlinear gain: 0.0001 =  and 0.001 = .  

    
a)       b) 
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   c)      d) 
 

FIGURE 7. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical 
solution of DM (3) (empty circles) for: a) the peak amplitude (solid lines) and FWHM (dash lines); b) the 

mean frequency (solid lines) and velocity (dash lines) as functions of [0.001;0.07]   at parameters 

0.012; 0.6; 0.3;  = − = = 0.0001 = ; c) the mean frequency: 0.001 =  (solid lines) and 

0.0001 =  (dash lines) as functions of [0.001;0.07]   at parameters 0.012; 0.6; 0.3  = − = = ; 

d) 0.27 =  (solid lines) and 0.3 =  (dash lines) as functions of   at parameters 

0.012; 0.6; 0.0001  = − = = .  

 
We should mention that the logarithmic scale on the horizontal axes in Fig. 7 is introduced for 

a better observation of the obtained results. Our findings from Fig. 7 are as important as those in 
Fig. 3. In Fig. 7a we can see that if we increase the value of the , the values of the amplitude of 

the RDS decrease while the pulse width increases. In Fig. 7b we can observe something very 
different in comparison with Fig. 7b (case for negative  ). In fact, with the increase of , the 

absolute value of the frequency of RDS increases up to approximately ~ 0.008 . If we further 

increase the values of  , however, the absolute value of the frequency steadily decreases. So, 

as can be seen in Fig. 7b, it turns out that due to the presence of the higher order correction 

term to the nonlinear refractive index 0.0001 = , the monotonic increase in the absolute value 

of the frequency shift from Fig. 2b is replaced by the existence of maximum absolute value of the 
frequency shift, after which the absolute value of the frequency shift is reduced. This nonlinear 
dependence of the absolute value of the frequency shift on   in the presence of the higher order 

correction term to the nonlinear refractive index is a new feature of the self-induced frequency 
shift. The position at which the frequency reaches its minimum value (or its absolute value 

reaches its maximum) ~ 0.008  is lower than the corresponding value in Fig. 5b ~ 0.015 .  

There is an interesting fact worth mentioning that at 0.07 =  the calculated value of the self-

frequency shift in Fig. 7b is comparable with that in Fig. 3b. The nonlinear dependence of the 
velocity on   can be observed in Fig. 7b. Fig. 7c shows how the observed nonlinear 

dependence of the absolute value of the frequency shift on   depends on the value of the 

higher order correction term to the nonlinear refractive index  . As can be seen, with the 

increase of the value of the higher order correction term to the nonlinear refractive index 

0.001 = , the maximum absolute value of the frequency shift decreases to 2.98   and its 
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position moves to larger values of 0.025 = . We can see that the absolute value of the self-

frequency shift could be reduced and controlled by increasing the value of the higher order 
correction term to the nonlinear refractive index  . Fig. 7d shows that with the increase of the 

value of the nonlinear gain  , the maximum absolute value of the frequency shift increases up 

to 9  . However, the position of the maximum frequency value does not change. 

We have also found that (as could be expected from Fig. 1) with the increase of the value 
of the nonlinear gain  , the amplitude at small   increases. The tendency for reduction of the 

amplitudes by increasing the value of   (see Fig. 2) remains unchanged. (In order to maintain 

conciseness, these results are not presented here.)  In all the considered cases, the dynamic 
model (3) qualitatively well describes the observed dependencies of the parameters describing 
the numerical solution. 

Finally, Fig. 8 below presents two examples for the combined influence of the saturation 

of the nonlinear gain ( 0  ) and the effect of the higher order correction term 0   and 0   

to the nonlinear refractive index [14-16]   on the self-frequency shift of RDS. 

    
   a)       b) 
 

FIGURE 8. Results obtained by the direct numerical solution of (1) (solid lines, solid squares, circles or 
triangles) and the numerical solution of DM (3) (dash lines, empty squares, circles or triangles) for: a) peak 

amplitudes and b) the mean frequencies for the following cases: 0 =  (circles), 0.0001 =  (triangles) 

and 0.00003 = −  (squares) as functions of  0.001;0.07   at parameters 

0.012; 0.6; 0.0001  = − = = − . 

 

In Fig. 8 we can observe a reduction of the maximum value of the amplitude for positive 
values of   and a reduction of the maximum absolute value of the self-frequency shift. We have 

found that there is a growth in the maximum value of the amplitude for negative values of   and 

a rise in the maximum absolute value of the self-frequency shift. In both cases, however, the 
position of the minimum value of the self-frequency shift remains unchanged.  

We can summarize the obtained results in this Section in the following way. We have 
observed numerically the nonlinear dependence of the absolute value of the frequency shift on 
the parameter describing IRS in the presence of the higher order correction term to the nonlinear 
refractive index (Fig. 7b). With the increase of the value of the higher order correction term to the 
nonlinear refractive index, the maximum absolute value of the frequency shift decreases and its 
position moves to larger values of parameter  describing IRS (Fig.7c). The increase in the 

value of the higher order correction term to the nonlinear refractive index leads to an increase in 
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the value of the maximum absolute value of the frequency shift, without changing its position 
(Fig. 7d). In all the phenomena considered, there has been identified a very good agreement 
between the results obtained by the numerical solution of Eq. 1 and dynamic model (3) [44]. In 

the case of the combined influence of the saturation of the nonlinear gain 0   and the effect of 

the higher order correction term to the nonlinear refractive index 0  ,  there has been found a  

reduction of the maximum absolute value of self-frequency shift. 

7. PERFORMANCE OF THE DYNAMIC MODEL  

Our study presents a material for discussion of the usefulness of finite dimensional 
dynamic models in the study of systems with infinite number of degrees of freedom. First, we 
would like to mention that the complete dynamic model of [44] describes the CCQGLE perturbed 
with IRS, TOD and SS. Here we use the particular cases of the model for CCGLE perturbed with 
IRS in Section 4 and for the CCQGLE perturbed with IRS in Section 5 and 6. In the case of the 
perturbed with IRS CCGLE discussed in Section 4, there have been found approximate fixed 
points. We believe that it has been clearly shown in Sections 4, 5 and 6 that at least in the 
regions of the values of the parameters discussed here, dynamic model (3) provides reasonable 
results for all the parameters of the sech-like RDS in all the considered phenomena. The main 
reason for the observed good agreement between the results obtained by the direct numerical 
solution of Eq. 1 and those obtained by dynamic model (3) is the preservation of the sech-like 
form of numerical solutions, which we have established in the process of our study. The reason 
for the observed preservation of the sech-like time shape of the numerical solutions is related to 
the relatively small values of the nonlinear gain  . As is well known for large values of the 

nonlinear gain  , there exists a variety of new numerical solutions of the CCQGLE [9,10]. The 

application of the dynamic model (3) has helped us in the obtaining of the proper initial 
conditions for the numerical analysis and allowed us to save computational time for the 
numerical simulations. Our study has also made it clear that the dynamic model of [44] performs 
better than that of [37-40]. An interesting question remains open: whether the alternative 
dynamic model applied as ansatz function and connected to the exact solution of the CCQGLE 
could lead to more accurate results than those obtained here.  

8. CONCLUSIONS 

In this work we have presented a study of the influence of the nonlinear gain and the 
influence of nonlinear gain/absorption, the influence of higher order correction terms to the 
nonlinear amplification/absorption and the influence of higher order correction terms to the 
nonlinear refractive index on the self-frequency shift of Raman dissipative solitons. In order to 
accomplish this aim, we have applied two methods: the numerical solution of the basic equation 
with the help of Agrawal’s split-step Fourier method with two iterations [58], and the dynamic 
model obtained with the method of moments [44].  

We have shown that with the increase of the value of the nonlinear gain , the pulses 

increase their amplitude and reduce their width, i.e. solutions compress. There is an increase in 
the frequency and the velocity of the Raman dissipative solitons. 

We have observed numerically a nonlinear dependence of the self - frequency shift of 
Raman dissipative solitons on the parameter   describing IRS in the presence of the saturation 

of the nonlinear gain. With the increase of the value of the saturation of the nonlinear gain, the 
maximum absolute value of the frequency shift decreases and its position moves to larger 
values of parameter  describing IRS. The increase in the value of the nonlinear gain leads to an 

increase in the maximum absolute value of the frequency shift, without changing its position. We 
have also observed numerically the nonlinear dependence of the absolute value of the 



17 

 

frequency shift on the parameter describing IRS in the presence of the higher order correction 
term to the nonlinear refractive index. With the increase of the value of the higher order 
correction term to the nonlinear refractive index, the maximum absolute value of the frequency 
shift decreases and its position moves to larger values of parameter  describing IRS. The 

increase in the value of the higher order correction term to the nonlinear refractive index leads to 
an increase in the maximum absolute value of the frequency shift, without changing its position. 
In all the considered phenomena, there has been identified a very good agreement between the 
results obtained by the numerical solution of Eq. 1 and those of dynamic model (3) of [44]. In the 

case of the combined influence of the saturation of the nonlinear gain 0   and the effect of the 

higher order correction term to the nonlinear refractive index 0  ,  there has been found a 

reduction in the maximum absolute value of the self-frequency shift. 
We can conclude that the observed nonlinear dependences of the self-frequency shift on 

the value of the saturation of the nonlinear gain as well as on the value of the higher order 
correction term to the nonlinear refractive index can be used for the better understanding and 
control of the spectral characteristics of Raman dissipative solitons. 

The influence of the other higher –order effects as well as the noise on the observed here 
phenomena could be the topics of further studies. 
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